407-444 ## HOUSATONIC RIVER BASIN DANBURY CONNECTICUT ### PADANARAM RESERVOIR DAM CT 00067 PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM The original hardcopy version of this report contains color photographs and/or drawings. For additional information on this report please email U.S. Army Corps of Engineers New England District Imail: Library@nae02.usace.army.mil DEPARTMENT OF THE ARMY NEW ENGLAND DIVISION, CORPS OF ENGINEERS WALTHAM, MASS. 02154 JULY 1980 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) | | BEFORE COMPLETING FORM | |---|--| | I. REPORT NUMBER 2. GOVT ACCESSION NO | D. 3. RECIPIENT'S CATALOG NUMBER | | CT 00067 ADAI43 757 | | | 1. TITLE (and Subtitle) | 5. TYPE OF REPORT & PERIOD COVERED | | Housatonic River Basin
Danbury Conn., Padanaram Reservoir Dam | INSPECTION REPORT | | NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS | 6. PERFORMING ORG. REPORT NUMBER | | DAPIO
- AUTHOR(#) | B. CONTRACT OR GRANT NUMBER(+) | | U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION | | | PERFORMING ORGANIZATION NAME AND ADDRESS | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | 1. CONTROLLING OFFICE NAME AND ADDRESS | 12. REPORT DATE | | DEPT. OF THE ARMY, CORPS OF ENGINEERS | July 1980 | | NEW ENGLAND DIVISION, NEDED | 13. NUMBER OF PAGES | | 424 TRAPELO ROAD, WALTHAM, MA. 02254 4. MONITORING AGENCY NAME & ADDRESS/II different from Controlling Office) | 15. SECURITY CLASS, (of this report) | | | TO TECONI I OURSE, for time reports | | | UNCLASSIFIED | | | ISA. DECLASSIFICATION/DOWNGRADING | 6. DISTRIBUTION STATEMENT (of this Report) APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) #### 18. SUPPLEMENTARY NOTES Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report. 19. KEY WORDS (Continue on reverse side if necessary and identity by block number) DAMS, INSPECTION, DAM SAFETY. Housatonic River Basin Danbury Conn. Padanaram Reservoir Dam 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The Padanaram Reservoir is an earth embankment with a stone masonry faced downstream slope that is approx. 325 ft. long and 26.3 ft. high. The downstream stone face is on a 1:12 slope and the upstream earth embankment is on a 2.25:1 slope. The spillway is located at the southern abutment of the dam and is 24-foot long channel. There is a lower gate house in the center of the dam for the control of a discharge pipe that passes through the base of the dam. The size of the discharge pipe is unknown and the valve for its operation is inoperable. The drainage area is 3.7 square miles and the reservoir has 52 acre-feet of available storage. ## PADANARAM RESERVOIR DAM CT 00067 HOUSATONIC RIVER BASIN DANBURY, CONNECTICUT PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM #### NATIONAL DAM INSPECTION PROGRAM #### PHASE I INSPECTION REPORT Identification Number: Name: Town: County and State: Stream: Date of Inspection: CT 00067 Padanaram Reservoir Dam Danbury Fairfield County, Connecticut Padanaram Brook April 21, 1980 #### BRIEF ASSESSMENT The Padanaram Reservoir Dam is an earth embankment with a stone masonry faced downstream slope that is approximately 325 feet long and 26.3 feet high. The downstream stone face is on a 1:12 slope and the upstream earth embankment is on a 2.25:1 slope. The spillway is located at the southern abutment of the dam and is 24-foot long channel. There is a lower gate house in the center of the dam for the control of a discharge pipe that passes through the base of the dam. The size of the discharge pipe is unknown and the valve for its operation is inoperable. The drainage area is 3.7 square miles and the reservoir has 52 acre-feet of available storage. The assessment of the dam is based on the visual inspection, past operational performance and hydraulic/hydrologic computations. The dam is judged to be in fair condition with several areas that require attention. These areas include seepage through the dam and along the toe, vegetation on the stone face and along the toe of the dam and the nonoperating status of the blowoff. The dam is classified as small and has a high hazard potential in accordance with guidelines established by the Corps of Engineers. The test flood for this dam is 1/2 the Probable Maximum Flood (PMF). The test flood inflow is 3,608 cfs and the routed test flood outflow is 3,460 cfs. The test flood outflow will overtop the dam by 2.3 feet. It is recommended that the owner engage the services of a qualified registered engineer experienced in the design of dams to investigate the seepage through the dam and prepare a detailed hydraulic/hydrologic study to determine the spillway's adequacy. Additional recommendations and remedial measures are included in Section 7 and should be implemented within one year after receipt of this Phase I Inspection Report. Joseph F. Merluzzo(Connecticut P.E. #7639 Project Manager Connecticut P.E. #11477 Project Engineer #### PREFACE This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Inspections. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Inspection is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Inspection; however, the investigation is intended to identify any need for such studies. In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure. It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected. Phase I Inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the Spillway Test Flood is based on the estimated Probable Maximum Flood for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and variety of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies considering the size of the dam, its general condition and the downstream damage potential. The Phase I Inspection does not include an assessment of the need for fences, gates, "no trespassing" signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with Occupational Safety and Hazard Administration's (OSHA) rules and regulations is also excluded. #### TABLE OF CONTENTS | | | | Page | |---|------------------------------------|---------------------------------------|---| | Brief
Revie
Prefa
Table
Overv | F Asse
w Boa
ace .
e of t | Transmittal essment ard Page Contents | i
ii-iv | | Sect: | ion | | | | 1. | PROJ | ECT INFORMATION | | | | 1.1 | General | 1 | | | | a. Authority | 1 | | | 1.2 | Description of Project | 1 | | | | a. Location | 1
2
2
2
3
3
3
3
3 | | | 1.3 | Pertinent Data | 3 | | 2. | ENGI | NEERING DATA | | | | 2.1 | Design Data | 7 | | | 2.2 | Construction Data | 7 | | | 2.3 | Operation Data | 7 | | | 2.4 | Evaluation of Data | 7 | | 3. | VISU | AL INSPECTION | | | | 3.1 | Findings | 8 | | | | a. General | 8
8
9
9 | | Sect | <u>10n</u> | · | Page | |------|------------|---|----------------| | | 3.2 | Evaluation | 9 | | 4. | OPER | ATIONAL AND MAINTENANCE PROCEDURES | | | | 4.1 | Operational Procedures | 10 | | | | a. General | 10
10 | | | 4.2 | Maintenance Procedures | 10 | | | | a. General | 10
10 | | | 4.3 | Evaluation | 10 | | 5. | EVAL | UATION OF HYDRAULIC/HYDROLOGIC FEATURES | | | | 5.1 | General | 11 | | | 5.2 | Design Data | 11 | | | 5.3 | Experience Data | 11 | | | 5.4 | Test Flood Analysis | 11 | | | 5.5 | Dam Failure Analysis | 12 | | 6. | EVAL | UATION OF STRUCTURAL STABILITY | | | | 6.1 | Visual Observations | 14 | | | 6.2 | Design and Construction Data | 14 | | | 6.3 | Post-Construction Changes | 14 | | | 6.4 | Seismic Stability | 14 | | 7. | ASSE | SSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES | | | | 7.1 | Dam Assessment | 15 | | | | a.
Condition | 15
15
15 | | | 7.2 | Recommendations | 15 | | Section | Page | |---|------| | 7.3 Remedial Measures · · · · · · · · · · · · · · · · · · · | 15 | | a. Operation and Maintenance Procedures | 15 | | 7.4 Alternatives | 16 | | APPENDICES | | | APPENDIX A - Inspection Checklist | | | APPENDIX B - Engineering Data | | | APPENDIX C - Photographs | | | APPENDIX D - Hydrologic and Hydraulic Computations | | | APPENDIX E - Information as Contained in the National Inventory of Dams | | PADANARAM RESERVOIR DAM QUADRANGLE: DANBURY, CT US ARMY, CORPS OF ENGINEERS NEW ENGLAND DIVISION WALTHAM, MASS. ## PHASE I INSPECTION REPORT PADANARAM RESERVOIR DAM CT 00067 #### SECTION 1 - PROJECT INFORMATION #### 1.1 General - a. Authority Public Law 92-367, August 8, 1972 authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspections throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Storch Engineers has been retained by the New England Division to inspect and report on selected dams in the State of Connecticut. Authorization and notice to proceed were issued to Storch Engineers under a letter of March 6, 1980 from William E. Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW33-80-C-0035 has been assigned by the Corps of Engineers for this work. - b. Purpose of Inspection - - (1) Perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests. - (2) Encourage and prepare the states to initiate quickly effective dam safety programs for non-Federal dams. - (3) To update, verify and complete the National Inventory of Dams. #### 1.2 <u>Description of Project</u> a. Location - The Padanaram Reservoir Dam is located approximately 3 miles northwest of downtown Danbury and 3,700 feet north of the intersection of Padanaram Road and Pembroke Road in the City of Danbury, Connecticut (See Location Map). The coordinates of the dam are approximately 41°-26' north latitude and 73°-29' west longitude. The dam is located on Padanaram Brook in the Housatonic River Basin. b. Description of Dam and Appurtenances - The Padanaram Reservoir Dam is an earth embankment with a stone faced downstream slope that is 325 feet long and 26.3 feet high. The downstream stone face is on a 1:12 slope and the upstream earth embankment is on a 2.25:1 slope. The top of the dam is capped with concrete, 7 feet wide. The upstream embankment is lined with riprap. The spillway is located through the southern abutment of the dam and consists of a 24-foot long stone weir and a 24-foot wide downstream spillway channel. There is a lower gate house at the center of the dam with a valve that controls a discharge pipe that passes through the base of the dam. The size of the pipe is unknown. The valve in the gate house is not operable. - c. Size Classification The Padanaram Reservoir Dam has a maximum height of 26.3 feet and a maximum storage of 132.5 acre-feet at the top of the dam. In accordance with the <u>Recommended Guidelines for Safety Inspection of Dams</u> established by the Corps of Engineers, the dam is classified as small (height less then 40 feet and storage less than 1,000 acre-feet). - d. Hazard Classification The Padanaram Reservoir Dam is classified as having a high hazard potential. Failure of the dam could result in the loss of more than a few lives. Approximately 1,500 feet downstream are two homes which would be inundated by the flood wave. Estimated flow and water depths just prior to dam failure at this location is 600 cfs at 2 feet and just after dam failure is 12,000 cfs at 11 feet or an increase in depth of 9 feet. - e. Ownership The Padanaram Reservoir Dam is owned by the City of Danbury, Connecticut. - f. Operator The person in charge of day-to-day operation of the dam is: Mr. John A. Schweitzer, Jr. City Engineer City of Danbury Danbury, Connecticut 06810 (203) 797-4641 - g. Purpose of Dam The dam impounds the Padanaram Reservoir which serves as a water supply for the City of Danbury. - h. Design and Construction History There are no design computations or construction drawings. The Padanaram Reservoir Dam was constructed in 1882. - i. Normal Operational Procedure There are no operational procedures for the dam. Water impounded by the dam is used only in times of shortage. #### 1.3 Pertinent Data - a. Drainage Area The Padanaram Reservoir drainage basin is in the City of Danbury and is irregular in shape. The area of the drainage basin is 3.7 square miles (Appendix D Plate 3). Approximately 5 percent of the drainage basin is natural storage and more than 60 percent is developed. The topography is rolling with elevations ranging from 1,023 (NGVD) to 577 (NGVD) at the spillway crest. Approximately 45% of the watershed is controlled by East Lake Reservoir, another water supply reservoir. - b. Discharge at Damsite There are no records available for discharge at the dam. (1) Outlet works (conduit) size: unknown Invert elevation (feet above NGVD): unknown Discharge Capacity at top of dam: unknown (2) Maximum known flood at damsite: unknown | (3) | Ungated spillway capacity at top of dam: | 600 cfs | |------|--|-----------| | | Elevation (NGVD): | 581.3 | | (4) | Ungated spillway capacity at test | | | | flood elevation: | 1,050 cfs | | | Elevation (NGVD): | 583.6 | | (5) | Gated spillway capacity at normal pool | | | | elevation: | N/A | | • | Elevation (NGVD): | N/A | | (6) | Gated spillway capacity at test flood | | | | elevation: | N/A | | | Elevation: | N/A | | (7) | Total spillway capacity at test flood | | | | elevation: | 1,050 cfs | | | Elevation (NGVD): | 583.6 | | (8) | Total project discharge at top of dam: | 600 | | | Elevation (NGVD): | 581.3 | | (9) | Total project discharge at test flood | | | | elevation: | 3,460 cfs | | | Elevation (NGVD): | 503.6 | | Elev | ation (feet above NGVD) | | | (1) | Streambed at toe of dam: | 555 | | (2) | Bottom of cutoff: | unknown | | (3) | Maximum tailwater: | 560 | | (4) | Normal pool: | 577 | | (5) | Full flood control pool: | N/A | | (6) | Spillway crest (ungated): | 577 | c. | | (7) | Design surcharge (original design): | unknown | |----|------|-------------------------------------|-------------------------| | a. | (8) | Top of dam: | 581.3 | | | (9) | Test flood surcharge: | 583.6 | | d. | Rese | rvoir (length in feet) | | | | (1) | Normal pool: | 1,200 | | | (2) | Flood control pool: | N/A | | | (3) | Spillway crest pool: | 1,200 | | | (4) | Top of dam: | 1,250 | | | (5) | Test flood pool: | 1,300 | | e. | Stor | age (acre-feet) | | | | (1) | Normal pool: | 80.5 | | | (2) | Flood control pool: | N/A | | | (3) | Spillway crest pool: | 80.5 | | | (4) | Top of dam: | 132.5 | | | (5) | Test flood pool: | 159.5 | | f. | Rese | ervoir Surface (acres) | | | | (1) | Normal pool: | 9.18 | | | (2) | Flood control pool: | N/A | | | (3) | Spillway crest: | 9.18 | | | (4) | Test flood pool: | 13.5 | | 4 | (5) | Top of dam: | 12 | | g. | Dam | | | | | (1) | Type: | earth embankment/stone | | | | | masonry downstream face | | | (2) | Length: | 325 feet | | | (3) | Height: | 26.3 feet | | | (4) | Top width: | 7 feet | |------------|------|---------------------------------------|------------------------| | | (5) | Side slopes: | U/S - 2.25:1 | | | | | D/S - 1:12 | | | (6) | Zoning: | unknown | | | (7) | Impervious core: | unknown | | | (8) | Cutoff: | unknown | | | (9) | Grout curtain: | unknown | | | (10) | Other: | N/A | | · | Dive | ersion and Regulating Tunnel | N/A | | • | Spil | lway | | | | (1) | Type: | stone-broad crested | | | (2) | Length of weir: | 24 feet | | | (3) | Crest elevation (without flashboard): | 577 | | | (4) | Gates: | N/A | | | (5) | U/S channel: | riprapped pond bottom | | | (6) | D/S channel: | 24-foot riprapped and | | | | | natural channel | | | (7) | General: | N/A | | i . | Regu | ulating Outlets | | | | (1) | Invert elevation (NGVD): | unknown | | | (2) | Size: | unknown | | | (3) | Description: | unknown | | | (4) | Control Mechanism | manually operated gate | | | /EN | Othon | gate not operable | #### SECTION 2 - ENGINEERING DATA #### 2.1 Design Data There are no design computations or drawings available. The dam was designed by W. G. Worthington and D. G. Penfield, Engineers. #### 2.2 Construction Data The dam was constructed in 1882 by George McKee, Contractors. There are no records or drawings available for the construction of the dam. #### 2.3 Operation Data There are no operations at this dam. Water is pumped out during times of shortages. There is a discharge pipe but it is not operating. #### 2.4 Evaluation of Data - a. Availability There were no computations or drawings available. There are no operating procedures. - b. Adequacy The information made available along with the visual inspection, past performance history and hydraulic/hydrologic assumptions were adequate to assess the condition of the facility. - c. Validity Due to the lack of available data, the conclusions and recommendations found in this report are based on the visual inspection and hydraulic/hydrologic computations. #### 3.1 Findings a. General - The visual inspection was conducted on April 21, 1980 by members of the engineering staff of Storch Engineers, D. Baugh and Associates, Inc. and Matthews Associates with the help of Mr. Bruce Healy of the City of Danbury, Connecticut. A copy of the visual inspection check list is contained in Appendix A of this report. Selected photos of the dam and appurtenant structures are contained in Appendix C. In general, the overall appearance and condition of the facility and its appurtenant structures is fair. b. Dam - The
dam is an earth embankment with a stone masonry faced down-stream slope. The downstream face of the dam needs repointing in areas where vegetation has been growing from the joints (Photo 1). There appears to be a bulge in the masonry just to the east of the gate house. A closer look at this bulge, however, does not show any distress in the mortared joints. The alignment of the top of the dam is good (Photo 2) and no bulges are apparent. The upstream embankment is brush covered and there are areas where the riprap has moved (Photo 2). The top of the dam is level with no signs of settlement. The stone wingwall is in good condition. Just below the toe of the dam and to the east of the gate house, there is a steady seepage flow (Photos 7 and 8) which was estimated to be approximately 50 to 75 gallons per minute. This seepage is clear and does not show any signs of particle movement. The estimated quantity of flow is from the entire area as shown on the Photo Location Plan. c. Appurtenant Structures - The lower gate house (Photo 6) is structurally sound, however, the valve is not operating and the type and size of the discharge pipe is unknown. The discharge pipe outlets approximately 50 feet downstream and is silted-up and has not experienced flow in years. The spillway is a stone weir that is in fair condition (Photo 3). The approach channel is not well defined and is the natural slope of the bottom of the pond. The training walls of the spillway are also stone masonry and are in fair condition. The downstream channel is a natural channel with riprap in some areas. It is 24 feet wide with steep side slopes (Photo 4). The condition is good except for areas of the channel were debris is cluttered. - d. Reservoir Area The area immediately adjacent to the facility is steeply sloped and in a natural state. The shoreline shows no signs of sloughing or erosion and there is no development adjacent to the reservoir. A rapid rise in the water level of the reservoir will not endanger any life or property. - e. Downstream Channel The downstream channel is a natural channel lined with rock and rock outcroppings. #### 3.2 Evaluation Overall, the general condition of the dam is fair. The visual inspection revealed items that lead to this assessment, and apparent areas of distress such as: - a. Seepage from the toe. - b. Inoperation of the blowoff. - c. Vegetation on the downstream face along the toe of the dam and the downstream channel. #### SECTION 4 - OPERATIONAL AND MAINTENANCE PROCEDURES #### 4.1 Operational Procedures - a. General The operation of this facility is for water supply purposes and the reservoir is kept as full as possible. The discharge pipe through the dam cannot be controlled because the valve is frozen shut and is inoperable. - b. Description of any Warning System in Effect There is no warning system in effect for this dam. #### 4.2 Maintenance Procedures - a. General This dam is minimumly maintained. - b. Operating Facilities Valve to the discharge pipe is not operable. #### 4.3 Evaluation The maintenance of the dam is less than adequate in that proper care of the dam embankment should be on a regular basis. The valve to the discharge pipe should be maintained in working order and there should be a proper operating procedure and warning system in effect. #### 5.1 General The Padanaram Reservoir Dam is an earth embankment with a stone masonry faced downstream slope approximately 325 feet long and 26.3 feet high. The spillway is a stone weir, 24 feet long. The downstream channel is 24 feet wide and is natural ground with some riprap. A discharge pipe passes through the base of the dam. The size of the pipe is not known and the valve is inoperable. The watershed encompasses 3.7 square miles and is more than 60 percent developed. The topography is rolling with the terrain rising 446 feet from the spillway crest. The pond has a total capacity of 132.5 acre-feet when the pond is at the top of the dam and 80.5 acre-feet at the spillway crest. Therefore, there is approximately 32 acre-feet of storage available. The test flood outflow for this dam is 3,460 cfs and the spillway capacity is 600 cfs or approximately 17% of the test flood outflow. #### 5.2 Design Data No design data is available. #### 5.3 Experience Data The Padanaram Reservoir Dam has experienced all the major storms of the 1930's and 1950's and most recently January, 1979. The flood of record in the Danbury area resulted from the storm of October, 1955. #### 5.4 <u>Test Flood Analysis</u> Based on the guidelines found in the <u>Recommended Guidelines for Safety</u> Inspection of Dams, the dam is classified as small structure with a high hazard potential. The test flood for these conditions ranges from 1/2 the Probable Maximum Flood (PMF) to the PMF. One half the PMF was used for this dam because of its size. Using the guide curves established by the Corps of Engineers (rolling terrain), the test flood inflow is 3,608 cfs. The routing procedure established by the Corps gives an approximate outflow of 3,460 cfs. The spillway capacity is approximately 600 cfs or approximately 17% of the test flood outflow. The test flood will overtop the dam by approximately 2.3 feet. In the development of the test flood inflow, it was assumed that the East Lake Reservoir Dam had no effect on the peak inflow. Although it does, the actual amount is negligible. This simplified the development of the inflow hydrograph, the routing through the dam and the outflow hydrograph for Padanaram Reservoir Dam. Storage behind the dam was assumed to begin at the elevation of the spillway crest. Storage was determined by an average area depth analysis. Capacity curves for the spillway assumed weir flow. #### 5.5 Dam Failure Analysis A dam failure analysis was performed using the <u>Rule of Thumb</u> method in accordance with guidelines established by the Corps of Engineers. Failure was assumed to occur when the water level in the reservoir was at the top of the dam. The spillway discharge just prior to dam failure is 600 cfs and will produce a depth of flow of approximately 2 feet several hundred feet downstream from the dam. The calculated dam failure discharge is 19,050 cfs and will produce a depth of flow of approximately 10 feet several hundred feet downstream from the dam or an increase in water depth at failure of approximately 8 feet. The failure analysis covered a distance of approximately 4,700 feet downstream where the depth of flow was calculated to be 4.5 feet or an increase of approximately 2.5 feet. Failure of the Padanaram Reservoir Dam may result in the loss of more than a few lives and may damage at least two dwellings located approximately 1,500 feet downstream. Flow due to failure at this location will be approximately 12,000 cfs at a depth of 11 feet. #### SECTION 6 - EVALUATION OF STRUCTURAL STABILITY #### 6.1 Visual Observations The general structural stability of the dam is good as evidenced by the vertical, horizontal and lateral alignment of the face and top of the dam and by the age of the dam. A bulge was noted on the front face of the dam east of the centerline, extending about 1/4 of the length. This bulge, however, appears to have originated during construction because no cracking of the masonry or mortar was observed. Some joints in the masonry need repointing as evidenced by the vegetative growth from the joints. The spillway channel is in fair condition. It should be cleared of the accumulated debris and some of the stones realigned. Some possible problem areas are seepage at the toe of the dam and the cluttered spillway. #### 6.2 Design and Construction Data No design data or construction drawings are available. #### 6.3 Post-Construction Changes No information on post-construction changes are available. #### 6.4 Seismic Stability The dam is located in Seismic Zone 1 and in accordance with Recommended Phase I Guidelines does not warrant a seismic analysis. #### 7.1 Dam Assessment - a. Condition After consideration of the available information, the results of the inspection and hydraulic/hydrologic computations, the general condition of the Padanaram Reservoir Dam is fair. - b. Adequacy of Information The information available is such that an assessment of the safety of the dam should be based on available data, the visual inspection results, past operational performance of the dam and its appurtenant structures and computations developed for this report. - c. Urgency It is considered that the recommendations suggested below be implemented within one year after receipt of this Phase I Inspection Report. #### 7.2 Recommendations The following recommendations should be carried out under the direction of a qualified registered engineer. - a. Seepage through the dam and at the toe of the dam should be investigated further to determine its origin and monitored to determine any changes. - b. Prepare a detailed hydraulic/hydrologic study to determine spillway adequacy and an increase of the total project discharge if necessary. - c. Trees including stumps and root systems should be removed from the toe and embankment slopes and backfilled with proper material. #### 7.3 Remedial Measures - a. Operation and Maintenance Procedures - - (1) Spillway channel should be cleared of debris and relined with the stone available. - (2) Vegetation on the downstream face of the dam and trees along the toe of the dam should be removed. This will facilitate the visual observation of existing and potential seepage. - (3) Discharge valve and pipe should be repaired. Valve for the discharge pipe should be on the upstream side of the embankment. - (4) Plans for a regular program of operation and maintenance of the dam should be initiated. - (5) Plans for around-the-clock surveillance should be developed for periods of unusually heavy rains and a formal downstream warning system should be put into operation for use in the event of an emergency. - (6) A program of annual
technical inspection should be established. #### 7.4 Alternatives None. #### APPENDIX A #### INSPECTION CHECK LIST ## INSPECTION CHECK LIST PARTY ORGANIZATION | PROJ | PADANARAM RESERVOIR DAM | | DATE | 4/21/80 | - | | |------|-------------------------------|--------------|---------------------------------------|-------------|---------------------------------------|--------| | | | | TIME_ | 11:00 a.m | l. | | | • | | | WEATHE | R Clear | | | | | | | W.S. I | ELEV | v.s | _DN.s. | | PART | <u>K</u> : | | • ., | | • | | | 1 | John F. Schearer, SE Civil | 6 | Peter Austi | n. DBA Civi | 1 | | | 2, | John Pozzato, MA Mech. | 7 | Bruce Healy | , Danbury | · · · · · · · · · · · · · · · · · · · | | | 3 | Kenneth J. Pùdeler, SE Civil | 8 | | | | | | | Gary J. Giroux. SE Hyd/Civil | | | | | · | | 5 | Michael Haire, SE Struct/Geo. | 10 | | | | | | 1 | PROJECT FEATURE | | INSPECT | ED BY | . REMARI | Œ | | 1 | | , | · · · · · · · · · · · · · · · · · · · | | | | | 2. | | | | | | | | 3. | | | | | | | | 4. | | | | | | | | .5. | | | | | | • | | 6. | | | | | | | | 7. | , | | | | | | | 8. | | | | | | | | 9. | | ١ | | | | | | 10. | | | | | | | | · | | | | | | | # PROJECT PADANARAM RESERVOIR DAM DATE 4/21/80 PROJECT FEATURE NAME DISCIPLINE NAME | AREA EVALUATED | CONDITIONS | |--|---| | DAM EMBANKAENT | , , | | Crest Elevation | Good | | Current Pool Elevation | Fair to good/some erosion | | Maximum Impoundment to Date | No information available | | Surface Cracks | Minor | | Pavement Condition | Good | | Hovement or Settlement of Crest | None . | | Lateral Movement | None | | Vertical Alignment | Good | | Horizontal Alignment | Good | | Condition at Abutment and at Concrete
Structures | Good | | Indications of Movement of Structural Items on Slopes | N/A | | Trespassing on Slopes Vegitation on Slopes Sloughing or Erosion of Slopes or Abutments | Problem Some through joints - minor Upstream - some/minor | | Rock Slope Protection - Riprap Failure | Minor upstream | | Unusual Movement or Cracking at or
near Toes | None: | | Unusual Embankment or Downstream
Seepage | Negligable through dam - some below dam. | | Piping or Boils | None | | Foundation Drainage Features | None | | Toe Drains | None | | Instrumentation System A-2 | Vone | | Inspection check list | | | | | |--|--------------|--|--|--| | FROJECT PADANARAM RESERVOIR DAM | DATE 4/21/80 | | | | | FROJECT FEATURE | MANE | | | | | DISCIPLINE | NAME | | | | | | · | | | | | AREA EVALUATED | CONDITION | | | | | CUTLET WORKS - INTAKE CHARREL AND INTAKE STRUCTURE | Underwater | | | | | a. Approach Channel | | | | | | Slope Conditions | | | | | | Bottom Conditions | | | | | | Rock Slides or Falls | | | | | | Log Boom | | | | | | Debris . | | | | | | Condition of Concrete Lining | | | | | | Drains or Weep Holes | | | | | | b. Intake Structure | | | | | | Condition of Concrete | | | | | | Stop Logs and Slots | | | | | | | | | | | | | | | | | | , | A-3 | Inspection Check List | | | | | |--|---------------------|--|--|--| | PACJECT PADANARAM RESERVOIR DAM | DATE 4/21/80 | | | | | PROJECT FEATURE | NAME | | | | | DISCIPLINE | NAME | | | | | | | | | | | àrea evaluated | CONDITION | | | | | OUTLET WORKS - CONTROL TOWER | • • | | | | | a. Concrete and Structural Stone masonry | | | | | | General Condition | Fair | | | | | Condition of Joints | Fair | | | | | Spalling | N/A | | | | | Visible Reinforcing | N/A | | | | | Rusting or Staining of Concrete | N/A | | | | | Any Seepage or Efflorescence | Minor | | | | | Joint Alignment | N/A | | | | | Unusual Seepage or Leaks in Gate
Chamber | n/a | | | | | Cracks | N/A | | | | | Rusting or Corrosion of Steel | N/A | | | | | b. Mechanical and Electrical | | | | | | Air Vents | None | | | | | Float Wells | None | | | | | Crane Hoist | None | | | | | Elevator | None | | | | | Hydraulic System | None | | | | | Service Gates | None | | | | | Emergency Gates | None | | | | | Lightning Protection System | None. | | | | | Emergency Power System | None | | | | | Wiring and Lighting System in Gate Chamber A-4 | None | | | | | INSPECTION CHECK LIST | | | | | |---------------------------------------|---|--|--|--| | PROJECT PADANARAM RESERVOIR DAM | MTE 4/21/80 | | | | | PROJECT FEATURE | MAME | | | | | DISCIPLEE | NAME | | | | | | | | | | | AREA EVALUATED | . CONDITION | | | | | OUTLET WORKS - TRANSITION AND CONDUIT | Inaccessable | | | | | General Condition of Concrete | | | | | | Rust or Staining on Concrete | | | | | | Spalling | | | | | | Erosion or Cavitation | | | | | | Cracking | | | | | | Alignment of Monoliths | | | | | | Alignment of Joints | | | | | | Numbering of Monoliths | · | | | | | | | | | | | | | N Commence of the | | | | | | | | | | | | | | | | | · | A-5 | Inspection check list | | |---|----------------------------| | PROJECT PADANARAM RESERVOIR DAM | | | PROJECT FEATURE | RAME | | DISCIPLINE | NAME | | | • | | AREA EVALUATED | CONDITION | | OUTLET WORKS - OUTLET STRUCTURE AND
OUTLET CHANNEL | | | General Condition of Concrete | N/A | | Rust or Staining | n/a | | Spalling | N/A | | Erosion or Cavitation | N/A | | Visible Reinforcing | N/A | | Any Seepage or Efflorescence | N/A | | Condition at Joints | N/A | | Drain holes | N/A | | Channel | Not well defined | | Loose Rock or Trees Overhanging
Channel | Brush and trees in channel | | Condition of Discharge Channel | Fair . | | | | | | | | , | A-6 | INSPECTION CHECK LIST | | | |---|---------------------|--| | PROJECT PADANARAM RESERVOIR DAM | DATE 4/21/80 | | | PROJECT FEATURE | NAME | | | DISCIPLIE | NAME | | | | | | | AREA EVALUATED | CONDITION | | | OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS | | | | a. Approach Channel | Underwater | | | General Condition | | | | Loose Rock Overhanging Channel | | | | Trees Overhanging Channel | | | | Floor of Approach Channel | | | | b. Weir and Training Walls | Dry rubble | | | General Condition of Concrete | Fair | | | Rust or Staining | N/A | | | Spelling | N/A | | | Any Visible Reinforcing | N/A | | | Any Seepage or Efflorescence | N/A | | | Drain Holes | N/A | | | c. Discharge Channel | • * | | | General Condition | Fair | | | Loose Rock Overhanging Channel | Some | | | Trees Overhanging Channel | Some | | | Floor of Channel | Natural rock - good | | | Other Obstructions | None | | | | | | | | , | | | Inspection check list | | |-----------------------------------|--------------| | PROJECT PADANARAM RESERVOIR DAM . | DATE 4/21/80 | | PROJECT FEATURE . | KAME | | DISCIPLING | RAME | | | | | AREA EVALUATED | CONDITION | | OUTLET WORKS - SERVICE BRIDGE | N/A | | a. Super Structure | • | | Bearings | | | Anchor Bolts | | | Bridge Seat | | | Longitudinal Members | | | Under Side of Deck | | | Secondary Bracing | • | | Deck | | | Drainage System | · | | Railings | · | | Expansion Joints | · | | . Paint | | | b. Abutment & Piers | | | General Condition of Concrete | | | Alignment of Abutment | · | | · Approach to Bridge | | | Condition of Seat & Backwall | | | | | | | | | | | ### APPENDIX B ### ENGINEERING DATA ### APPENDIX C ### **PHOTOGRAPHS** PHOTO 2 CREST OF DAM PHOTO 1 DOWNSTREAM FACE OF DAM PHOTO 3 SPILLWAY-UPSTREAM PHOTO 4 SPILLWAY CHANNEL-DOWNSTREAM PHOTO 5 VIEW LOOKING DOWNSTREAM PHOTO 6 LOWER GATE HOUSE & OUTLET PHOTO 7 SEEPAGE NEAR TOE OF DAM PHOTO 8
SEEPAGE NEAR TOE OF DAM ### APPENDIX D HYDROLOGIC AND HYDRAULIC COMPUTATIONS scale 1:24000 PLATE 3 STORCH ENGINEERS WETHERSFIELD,CONNECTICUT U.S.ARMY ENGINEER DIV. NEW ENGLAND CORPS, OF ENGINEERS WALTHAM MASS. NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS ### PADANARAM RESERVOIR DAM | SCALE: AS SHOWN | |-----------------| | DATE JULY 1980 | | JOB Phase I Da | am Inspection - #4463 | |-----------------|-----------------------| | SHEET NO. | of | | CALCULATED BY P | A. DATE 4/25/80 | | CHECKED BY ROC | CHE | CKED | BY | <u>B D</u> | <u>C</u> | | | | | DATE | 7 | $\angle 1$ | <u> 5/s</u> | <u> 30</u> | | |---|----------|-------------|-------------|----------------|-----------|----------|------------|-------------|---|---------------------------------------|--------------|--------------|-------------|------------|-------------|---|------------|--------------|----------|---|-------------|----------|----------|------------|------------------|-------------------------|--|----------| | | | | | | | | | | | | | | | | _ | Det | tem | nina | tic | n c | of F | MF | | | | | | | | NAME | OE t | \ AM | | ъ. | | | | | ٠. | | | | : |] | | : | | | ! | ·
: | - | | | | | | | | | NAME | UF_L | JAM | | r) | HD (| +NH | KH. | <u> </u> | \$.C | -5 | 104 | 111 | | | | <u></u> | <u> </u> | ÷ | | <u>.</u> | :
:
: | | | | | | | | | DRAIN | ACE | ΑĐ | - A | -> | 7 | 50 | M | | | · · · · · · · · · · · · · · · · · · · | ļ | ļ | <u> </u> | <u> </u> | | <u> </u> | ļ | <u> </u> | <u> </u> | <u>[</u> | | <u> </u> | | | | | | | | DKAIN | AGE | AK | LA | 7 |). | ٧. | | 1 | | :
: | ļ | :
T | :
! | ļ
 | <u> </u> | · • • • • • • • • • • • • • • • • • • • | · · | <u> </u> | ļ | :
! | <u> </u> | | | | ļ | | j 1-1-1 | | | | | | !
! | ļ
 | : | ļ | | | | | | - | <u>.</u> | :
! | | | | | | | | | | | | į | | | | INFLO | W | | | 979 | ξ, | ĊFŚ | /5 | M e | | !
! | | | | | | | | | | | | | , | | | | , | | | | | | | | | | 1 - | | *************************************** | ļ | 1 | | i | | | | [| | | | ļ | | | | | | | <u> </u> | | | | | | ļ
1 | V | <u> </u> | | | | 1 | | į | ļ <u>.</u> | | \ 7. | <u> </u> | | (| | | | | | • | | | | | | | | | ļ | | 7 | ζ ' | 7/4 | | - | (9 | η5 | C | -5/ | 5 M |)(| 3.1 | 54 | `)_ | 3 | 36 | 08 | Œ | 5 | | | | ************************************** | | | | | -les smests | | | | ļ | | | | !
!
! | ļ | | | | ļ
Ļ | | | <u> </u> | | *** | <u>.</u> | | | · | | | | | | | | | | | Q | goj | = 7 | 540 | ×A | 7 9 = | | 5 | • (| FS | | | | | | | | | 1 | - | | | | | | | | | | | | | | | | <u> </u> | | | | | | | ļ | · · · · · · | !
! | | .i | | | ļ | i | | | | | | | ********* | | | | <u> </u> | | | ļ
! | <u> </u> | ļ | | | | | ļ | | ļ | <u> </u> | <u></u> | | | | ļ | <u> </u> | :
 | | | | | | | | | | | | | | <u> </u> | <u> </u> | | | | | ļ | ļ <u>.</u> | ! | | <u> </u> | ļ | ļ
 | | | | <u></u> | | | | | | | | | Estin | nati | ng | the | ef | fec | t o | fs | urci | nar | ge | sto | rag | e o | n t | ne | Мах | imu | m P | rob | abl | e D | isc | iar | jes | | ., | | | | | į | | | | | | | | | | | | | | | | | | | i | | | , | 00 | YE | | | | | | | 1 | !
_ | 0_ | _ = | | 36 | 5 8 | ar, acad | | cf | S | | | , | | † | · • | | | ********* | | | | 6 | | | , | | | | | Ł | • | - | - | | | | 1 | 1 | 1 | | | ļ | <u> </u> | ļ | 4 | <u> </u> | <u> </u> | | | | | | | 2 | | | + - ! | | 2 | а. | H | = | - | G. | <u>45</u> | | | _(e | lev | .) | <u> </u> | | <u> </u> | - | | | | | | | 4 | . 9 7 | | | | | - late-Merbillion conformation | | | : | - | : | ; | | | | : | : | <u>.</u> | ļ | <u>.</u> | | ļ | | | | | <u> </u> | | | 0 | _{"گ} " | | | | | | | | ! | | - | 1 | | | | : | : | : | | | | | | | | | | | | - I | | | | | | | | | c. | Q _D | ຸ = | Q | 1 (| 1 - | ST | OR, | 1- | 5) | = | 1 | <u>5</u> 4 | ŝo | | | cf | S | | | | Q | 0.0 | مصو | | | | | | | 1 | | | ; | | | | , – | ; | : | | 7 | • | 4 | 1 | | : | | | | | | 0': | | | | | | | | | | | | G. | | | | <u></u> | ļ | S | IUR | 2 = | | 0 | 4 | | | | | | : | 1 | | <u>،</u> ير، | | | | | | Ь. | ST | OR. | . = | 0 | . 4` | ` | i
 | | | ļ | <u> </u> | | | ļ | <u>.i</u> | | | <u> </u> | | | | c. S . | | | | | | | | · | | ļ | <u> </u> | ļ | | | | - | | ļ | ļ
 | ļ | <u> </u> | | | | | | | · | | | | | | | | | | | Qp | Δ = | 3 | 46 | 0 | Ç ₹ | 5 | | | | | | 1 | !
! | | | | | | | a | 00 | CF | -5 | | | | | | | | | | | , | | | | | _ | ፐሊክ | _ | _ | ۸,۱ | 1 | | | | | | | ٠١. | _ | | | | | | .5-1747.74 | i | HA | _ | | ઉ.૯ | | | | | | - > | IUN | A - | _ c | .4" | | | | | | | -4. | ۹ ' ; | · O, | | | | | | | :
a
! | [
[
! | ļ | <u> </u> | | | | :
: | | | ļ | | <u> </u> | | <u>!</u> | | | | | | | | | | na.a1-4-484-14 | | | _ | | | PMF | = | | 3 | 460 | 2 | | | _cf | \$ | | | ļ | | | <u> </u> | i
 | <u>.</u> | <u> </u> | | | | 9 | 00 | CFS | <u> </u> | | | | | | i- hi- e-fii | <u> </u> | ļ | | | | | <u> </u> | | ļ | ļ | | | | <u> </u> | ļ | | | , | | | | | | | | Capac | ·itv | ωf | th | . . | nil | ן
הער | V W | hen | th | e n | nnd | e] | eva | tio | נ מ | 5 A | + + | he. | ton | ηf | th | e d | am | | | | | rr####* | | oupuc | | ····• | UIT | | Pii | mu | ייי ע | rren | | CP | | | LTV | - | 74 | | i | | | V. | ţ | | ATT. | | | | | ٠, | | | | | | Q | * | <u> </u> | 60 | 0 | | c | fs | or | | 1 | 7 | | 7 | of | the | "PM | F | ., | | | | | | | | <u> </u> | | | | | i
 |] | | | | | <u> </u> | | | ļ | <u> </u> | <u> </u> | | ļ | ļ | <u> </u> | 1 | | ******** | | | | | | | <u> </u> | | | | | :
 | | | | | | ļ | ļ | ļ | G | 7. | /0 | | 95 | 100 | <u> </u> | r | | | | | ra 1 a per PI piler 1 a | | | | | | | | | | | | | | | ļ | | ļ | ļ | ļ | · | | | | :
!
!********************************** | | | | | | | | | | | | | | : | <u>.</u> | | ! ;
: : | | | | 1 | | ! | | ! | | | | ! | <u> </u> | | | | hannen men | | | | .,, | | | | | ;
; | i | · | | | | - • | | | | | | | ! | 1 | | | | | | | | | | | | | | | | | | | <u> </u> | | | | | •
! | 1 | <u> </u> | | | - | · | | | | | | | | | | | | | i
destruited discontrate destruited in | | | | |]
 | ;
| | |
: | :
 | ļ | ļ | |
: | | | | | | i |
! | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | | | • | ! | | -ת | -1 | | | <u>:</u> | | | | <u>.</u> | | 1 | | 148-41-4 | | 1 tabe 21 mar-12 | | | | | 1 | : | | | i | | | | : | | | , D | - | | <u>:</u> | : | : | | | : | | : | 1 | | | | | | | | JOB Phase | I Dam | Inspection | 4463 | |----------------|-------|------------|---------| | SHEET NO. | 2 | OF | 10 | | CALCULATED BY. | 910 | DATE | 4/14/80 | | CHECKED BY | BDC | DATE | 7/15/88 | | | , : | | · _ · | | 1 1 | | · · | | A | REA | <u> - C7</u> | PACI | TY _ | | | | | |--|----------|--------------|--------------|----------|--|--------|----------|--------|--------|--------------|--------------|----------|------|---|--|---------------------------------------|------| | Name | of | Dam | : <i>P</i> A | DANA | RALL | RE | S. D | AM. | | | | | | | | <u> </u> | - | | :
 | i : | | | <u> </u> | | | | | | | | | - | *************************************** | | : : : : : : : : : : : : : : : : : : : | | | | ELI | EV | | DEPTH | | AR | t - t- | | AVG | .ARE | A | VO | L | | Σν | _ : :: | | | :
 | |) | . | | | 9. | 18 | | | | - | | | | | 7 | | | | | | | 3.0 | | | | | / C |).5 | 1-1 | 3/. | 5 | | | | | | | 3 | ,0 | | | | | 9 | | | | | | | | <i>31,</i> | ర | | | | | | | 10,0 | | | | | · /3 | 3.5 | 1 | / 3ජ | ,0 | | | | | | | 13 | ,0 | | | | 1.5 | 5,6 | | | | | | | | / 6 | <u>ت. ک</u> | | | | | | | (01) | | | | | | -/. | | | | , | | 5 F | 1, | | · · · · · · · · · · · · · · · · · · · | | - 1 | Eleu (| 14)`- | | Storag | e 60 | slow s | 7p./14 | oy ! | s ar | 2proxi | mate | 4 | в О. | <u>></u> / | itol | | | | , , | | | ļ | | | - | | <u> </u> | | | - | | | | | | ······································ | | | | | <u>.</u> | | 1 | | -/- | | | | ļ | | | | | | | ļ | 10 | | | <u> </u> | ļ | | | / | | | | | | ······································ | | | | | | | | | | | | | | | | | ļļ | | | | | | | 1 | 9 | | | <u> </u> | | | / | | | | | . | | | | | | | | | | | | | | / | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | 8 | | | | | | | | | | | | | | - | <u></u> | .i | 7- | | - 1 - | 1 | | | | | | <u>.</u> | | | i | | | | <u></u> | | 6 | | | | / | | | | | | | - | | | | | | | <u>.</u> | | | | | | | | | | | | | | | | | | | ļ | 5 | | | 1 | | | 70 ¢ | Dak | 59 1. | <u> </u> | | | | | | | | | <u> </u> | i | | | / | | | 70 | DAM | | - | | | | | | | | | 1 | Y | | | <u> </u> | | 1 | | | | | | | | | | | | | † | | | | | | 1 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | | -l | <u> </u> | | / | 1 | | | | | | | | | | 110 | | | | i | | 2 | 1 | | | | | | | Ī | | | | : | | | | | | : | | 1 | | | | | | | | | | | | | | | | <u> </u> | | <i>!</i> | 1 | | | | | | | | | | | | | | | | - | . ! | | / | | - | | 43 | وسدواح | 7 2 | روا | 577 | | | | | | | | | | OK | 2 c | , 40 | 60 | ευ | 100 | | | 10 | 160 | | | | | | | | 1 | | | 40 | · | On | י ממ | ty (f | (4) | | | | 1 | | 1 | | į | | | | | | | | | / | 7 V | | | | | ; | | | | | Phase I Dam Inspection 4463 10 3 SHEET NO._ CALCULATED BY PA DATE 4/25/80 BDC Stage Discharge | NAME | OF I | MAC | • | Pa | DA | NA |
E PS | 4 | ≀≅ | 5,) |)PN | | | | | | | | i | : | | :
:
!
 | | | : | | | | |------------------|--|--------|------------|------------|--------------|---------------|------------------|--------------|-------------|-----------|------|------|---------------------|------------|-------|--|----------|---------|------------------|--------------|----------|-----------------|-------------------------|-------------------|----------|--------------------------------------|------------|------------| | | | | • | , * | ~ | | | | | | Q | =CL | 3%
H | 2 | Ī | . [| 1 | | | | | | | :
:
: | <u> </u> | | | | | | | S | рi | 11 | way | Ι | | | | | | 11w | | | | | | | | Dai | n | | | | | | | | | lev | С | 1 | L | | I | | | 2 | (| | L | | Н | | Q | | Ç | | L | | Н | | Ç |) | | ! | QT | | | | | | | | ., | | | | | | 1 | 27 | 0 | z 4 | | ٥. | 5 | Z | 3 | | | | | | | | | | | | | | | | | | | 73 | > | | | 2.ح | 3 | ء ح | 4 | ١, | o | 6 | <u>.</u> | | | | | | | - | | | | | | | | | | | | G٦ | 5 | | | 2.0 | 3 | 24 | , ' | ١. | 5 | 11 | G | :
!
! | | | | | | | | | | | | | :
زردر رسسم | | | | ********* | //6 | 3 | | | z,4 | 3 | عح | + ¹ | Z. | 0 | ۲ | (1) | | | | | | |)
 | 1 | | | | | ., | | | | | | ۹۳۰ | 2 | | | 2.6 | 3 | z | 4 | ζ, | 5 ` | ZF | 50 | | | | | | | | | | | | | | | | | | : | 250 | > | | | 2.5 | 3 | z | + | 3 | O | 3 | 78 | : | | | | | | | <u> </u> | | | | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 858 | 5 | | | 2,5 | 3 | Z ¢ | 4 | 3 | 5 | 4 | ١3 | | | | | | | | | | | | | ., | | | n le ritten en en | | | 413 | > | | | 7,4 | 3 | Z | + | 4 | ٥ | 5 | •5 | | | | | | | | <u> </u> | | | | | | | | . ********** | | | 505 |)
 | | | Z.C | 3 | z | 4 | 4. | 5 | 60 | . 5 | | | | | | | | !- | | | | | | | | ********* | <u> </u> | | ७०३ | | | | ۲.د | .3 | z (| 4 | 5 | ٥ | 7(|) 6 | ļ
Ļ | | | | | | | | ٥.٥ | 5 | 30 | .0 | ٥, | 5 | 7 | 81 | | | ∍87 | <u>.</u> | | | 7.6 | 3 | 2 (| 4 | 5 | 5 | 8 | 14 | ļ | | | | | | | _ | ٥. ح | 5 | 39 | 0 | ١, | 0 | ٦٩ | 3 5 | | | 1000 | > | | | 2.5 | 3 | ح 4 | 4 | 6, | 0 | 7 | 28 | | | | | | | | | ٥.٥ | ·5 | 3 | *** * ** *** | | 5 | 141 | | | | £3 6, | • | | ļ | 2.5 | 3 | ٤, | 4 | 6 | 5 | 10 | 46 | | | | | | | | ·· ··································· | ٧.٧ | | 3 | ٥٥ | Z | | 22 | | | | 325 |) (| | ļļ | 7.6 | 3 | Z | 4 | 7. | ,0 | \' | (S) | ļ | | | | | | | | ۷.٤ | ,5 | 3 . | 00 | 7 | .5 | 314 | +3 | <u> </u> | | 4317 | Z | | Eu | | ;
} | | | | | | ļ | <u> </u> | | | | | | | <u>.</u> | | ** | | | | | (, species) - a - b - | l l-abeniables | | | | | | € <u>1</u>
(F | *> | | | | 1 | <u>'</u> | | | | | | | مست | | | | للنشتشية | | | | | | | | | | | | | | <u> </u> | | | | / | <u> </u> | | ļ | | | | | است | لسنب | | | | | | ******** | | | |
 | <u> </u> | <u>.</u> | | ···· | | 6 | | | | / | 40 | | | 1 | | | | | | | | | ,,,,, | | | | | | | | !
! | [| | | | ļ | | | - | 1 | | کهد ا | <u> </u> | | ļ | | | | | | 184 | | | | | | | | | | | <u> </u> | | ,. | | - 5 | | | | | | ļ | :
:
:
: | | ļ | | | | | | | | | , | | · /* |
 | | | | | | | | | | / | | 1 | | | <u> </u> | | | <u> -</u> | 407 | Q1 | . DV | ₩. | 58 | 1.3 | | | | | | | | | | <u> </u> | <u> </u> | | | | 4 | <u> </u> | / | / | | ļ | ļ | ļ | ļ | i
 | ļ | | | | | | | | | | | <u> </u> | | | | <u>!</u> | <u> </u> | | | | | - | ا/ڃ | | | ļ | ļ | | ļ | | | | , | ese 1 - / 4 - 1 1 1 | -0 | | _ | | | | | !
 | <u> </u> | | | | | | | | - 3 | | / | | | <u>.</u> | ļ | <u> </u> | ļ | | ļ | | | | | | | | | . relationship (| 4941 14-1 | | | 17-4Hza zs ** | | ļ | <u> </u> | | | | | \$ | | | | 1 | | | | | ļ | | | | | | | | | | | <u> </u> | | | <u>!</u>
! | <u>!</u> | <u>!</u> | : | | | 7 | -/- | | | | <u>.</u> | | - | | ļ | | ļ | | | -19191 194 | | | | | | | | | | <u>.</u> | | <u> </u> | | | | | 14 | _ | | | tage-ledfort | | | - | ļ | <u>. </u> | | | | | | | |)
! | | | | | | | | 1 | 1 | | | - 1 | 1/ | | | mbarda | + | | 1 | | <u> </u> | ļ | | | | | | | | | | !
! | | <u> </u> | | i
I | | | | | | - | \parallel | | | | | ļ | | <u> </u> | | ļ | | | | | _ | į | ******** | i
 | | | | 1 | <u> </u> | |
 | | | | | | 6 | 1 | | /00 | | <u>:</u>
: | | | + | -WA | Υ | EU. | | 5 | 17. | 400 | <u> </u> | | | 12 1 | 000 | | i | | - | ļ | | | | | | | | 100 | | ÷ | i
: | | a00 | DIS | CHUB | | | | | 1 | | ļ | | : ~ | :
: | ļ | :
:
: | | | i | | | DRM 204 Available from NEBS INC Townsend, Mass 01470 | Phase I Dam | Inspection - #4463 | |---------------------|--------------------| | SHEET NO. | OF 10 | | CALCULATED BY P. A. | DATE 4 (28/80 | | CHECKED BY BDC | DATE 7/15/80 | | ure Hydrographs $(26,3) = 9050 \text{ c= 5}$ $\text{Eoo} \mathbf{V}_2 = 21.1$ | | |--|-----------------------------| | | | | | | | | | | | | | | | | 800 V ₀ = 21./ | | | 800 V ₀ = 21.1 | | | 800 V ₀ = 21./ | | | | Acft | | | | | | | | | | | v ₂ = 19.7 | Acft | | | | | | | | 1000' V3 = 30,9 | Acft | | 3 | | | | | | | | | $V_3 = 27.9$ | Acft | | | | | | | | 1000' V. = 844 | Acft | | 4 | | | | | | | | | V ₄ = 28.7 | Acft | | 1. | | | 3 | 7, 7 | | | | | | | | | 1000' V ₄ = 34.4 | PRM 204 Available from NEBS INC Townsend Mass 01470 STORCH ENGINEERS Engineers - Landscape Architects Planners - Environmental Consultants | JOB Phase | I Dam Inspec | tion - #4463 | |----------------|---------------|------------------| | | <u>5</u> | OF 10 | | CALCULATED BY_ | P.A. | DATE 4/28/80 | | | | DATE 7/15/80 | | Downs | tream Hydrogr | anhs (Continued) | | Sec | ction \ | | ! | | | | | | | | | |---------|-----------|------------------------|-------------------------------------|-----------------|--------------------|---------|------------------|-------|------------------|--------------|-----------| | | 4a. | H ₅ =. | 10.2 | | A ₅ = | 120 SF | L ₅ = | 7100' | y ₅ = | <u> 28.3</u> | . Acft | | , | b. | Q _{P5} = | Q _{P4} (1-V ₅ | / s ,) = | 393 | 52 | cfs | | | | | | | c. | H ₅ = | 7.2 | | A ₅ = (| .00 SF | | | | | | | | | | | | | GO SF | | | V ₅ = | 21.7 | Acft | | | 1.10 | Q _{D5} = | 8035(I | 217/557 |) = LI | 9000 | 5 | | | | | | Sec | ction \ | | | 700 | | | | | | | | | | 1 | Contratarioni contrata | 7,0 | | A. = C | 700 SF | L, = | 750 | = ۷ | 15.5 | Acft | | | 1 | 1 7 | = Q _{P5} (1-V ₆ | | | 0.0 | | | D - | | | | | | | L1.5 | | | 500 31 | | | | | | | | | ''6 | | | | | | | v· = | 12.0 | Acf+ | | | | | Qp6=41 | 300(1-12 | (A) = | 3170, 6 | Į, | | 6 - | | | | 260 | | | | | 1 | | | | | HEIDER HEIDE | | | | | | 5.51 | 1 1 1 | A ₇ = | | L ₇ = | | V ₇ = | | Acft | | | b. | Q _{P7} | Q _{P6} (1-V ₇ / | 'S} = | | | _cfs | | | | | | | c. | H ₇ = | | | A ₇ = | | | | | | | | | | | | | A _A = | | | | V ₇ = | | Acft
- | | - | | Q _{P7} | | not run runko | | | | | | | <u> </u> | : | 1 | | | | , D | -5 | | | | | | JOB 4/63 SHEET NO. 6 OF 10 CALCULATED BY BAH DATE 5/80/80 CHECKED BY BDC DATE 7/15/60 ## STORCH ENGINEERS/STORCH ASSOCIATES 4463 SHEET NO. 5/30/80 BAH BAC ### STORCH ENGINEERS/STORCH ASSOCIATES **Engineers - Landscape Architects** 41-163 ... 10 SHEET NO. DATE 5/30/80 BAH CALCULATED BY__ BDC DATE ... CHECKED BY D-8 ## STORCH ENGINEERS/STORCH ASSOCIATES 41463 10 SHEET NO. BAH 5/30/80 CALCULATED BY. BPC CHECKED BY. ### APPENDIX E # INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS